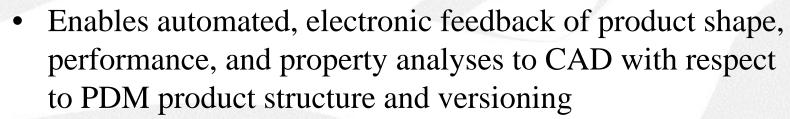


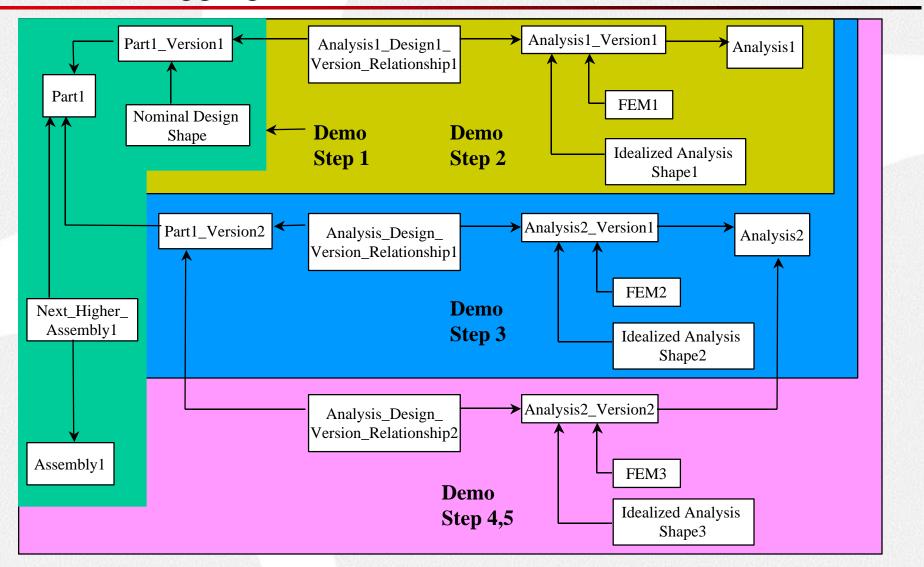
Lockheed Martin Tactical Aircraft Systems

- Enterprise Analysis Information Integration with AP209
- History of AP209 and Part 104 Development
- Review of AP209 Content, Status and Implementations
- Integrating the Design/Analysis/Manufacturing Process with STEP AP209 Technology
- AP209 Status


Enterprise Analysis Information Integration with AP209

PDM

AP209


CAE

 Enables sharing of PDM **CAD** controlled composite and metallic design and analysis information, material properties/specs

- Platform to extend engineering analysis STEP coverage into other analysis disciplines
- Provides a long term, potentially growing, repository crucial to many industries and vendors
 - Neutral format for PDM/CAD/CAE

AP209 NOT Just FEA - It Enables Versioned Design/Analysis Information Sharing and Aggregation Within a Product Structure

History of AP209 and Part 104 Development

- AP209 development initially funded by USAF Wright Labs Materials Technology Division
 - Team of SCRA, Northrop-Grumman, LMTAS, and Boeing developed standard through CD status
 - ISO Engineering Analysis committee (TC184/SC4/WG3/T9),
 PDES, Inc. and LMTAS then processed CD ballot issues to create
 DIS version
- Part 104 initially developed within STEP EA committee
 - PDES, Inc. helped with DIS figures, LMTAS did ballot comment editing
- Both standards have been developed and reviewed by a large body of companies and standards organizations

AP209: Composite & Metallic Structural Analysis & Related Design

Analysis Discipline Product <u>Definitions</u>

- Finite Element Analysis
 - -Model (Nodes, Elements, Properties,...)
 - -Controls (Loads, Boundary Constraints,...)
 - -Results (Displacements, Stresses,...)
- Analysis Report

Design Discipline Product Definition

- Shape Representations
- Assemblies

Configuration Control, Approvals

- Part, product definitions
- Finite element analysis model, controls, and results

Information Shared Between Analysis & Design

- 3D Shape Representations
- Composite Constituents
- Material Specifications & Properties
- Part Definitions

Composite Constituents

- Ply Boundaries, Surfaces
- Laminate Stacking Tables
- Reinforcement Orientation

Material Specifications & Properties

- Composites
- Homogeneous (metallics)

3D Shape Representation

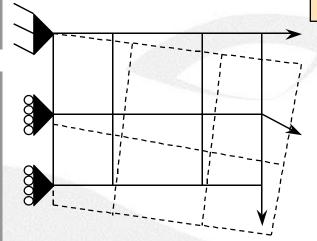
- AP202/203 Commonality Plus Composite Specific 3D Shapes
 - Advanced B-Representation
 - Faceted B-Representation
 - Manifold Surfaces With Topology
 - Wireframe & Surface without Topology
 - Wireframe Geometry with Topology
 - Composite Constituent Shape Representation

Part 104: Finite Element Analysis

Finite Element Model

- Administrative information
- Link to product definition

Nodes


- Location
- Output coordinate system
- Geometric associativity

Elements

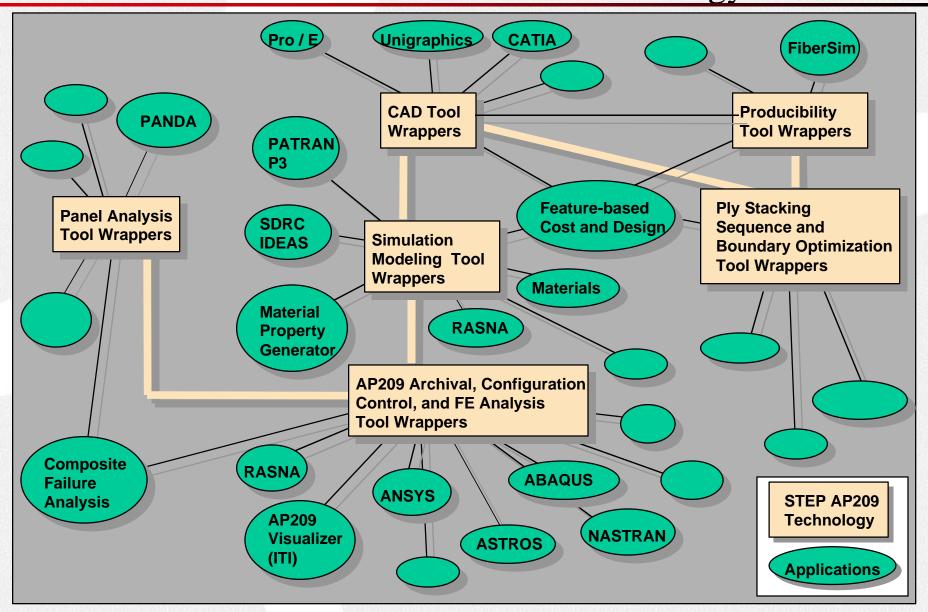
- · Curve, surface, volume, explicit
- Comprehensive surface and curve properties
- Optional matrix integration specification
- Parametric locations (shared with results)
- Geometric associativity
 - Edge, face, volume

Part 104 Scope

- Linear static, modes and frequency analyses
- Designed to accommodate nonlinear analyses
 - 95% + of required information already covered in Part 104

Analysis Controls

- Administrative information
- Must apply to a model
- · General structure allows load cases to be:
 - Specified
 - From a previously calculated case
 - Linear combinations


Loads, Constraints, and Analysis Output

- Administrative information
- Element and nodal field output specified by general scalars/vector/tensors and corresponding variables
- Analysis output and loads share common form
- Single and multi node constraints

Materials

- Specified by general fourth order tensors
- General iso/anisotropy continuum properties
- Specialized shell properties
- · Links to material specifications

Integrating the Design/Analysis/Manufacturing Process with STEP AP209 Technology

Review of AP209 Implementations

- Completed and based upon AP209 Committee Draft (CD)
- PDES, Inc. Design-To-Analysis Phase 1 and Army Tank Command (1994), PAS-C Final Demonstration (1996)
 - Ford, Boeing, Lockheed Martin, NG-Vought, ITI, MSC
 - Auto And Composite Tank Structures, Aircraft Composite Structures
 - CAD-To-CAE-To-CAE
 - COTS CAD/CAE (ARIES, PATRAN, NASTRAN, ITI/STRESSLAB, Unigraphics)
 - Linear Static FEA
 - Videos Generated, PDES, Inc. TAC Demos
- DARPA MADE/IPDE Program Phase 1 (1996)
 - Boeing, ASU, MSC
 - Aircraft Structures
 - CAD-To-CAE(CFD)-To-CAE(Structures)-To-CAE(CFD)
 - COTS CAD/CAE (CATIA, PATRAN, NASTRAN)
 - Boeing Proprietary CFD (AGPS/A502)
 - Iterative 1st Order CFD And Linear Static FEA
 - In-House Boeing Demo, PDES, Inc. Offsite Presentation

Review of AP209 Implementations (Cont.)

- Based upon AP209 Draft International Standard (DIS) -Lockheed, Electric Boat, MSC (1998)
- Electric Boat Design-To-Analysis Process
 - Ship Structures
 - CAD-To-CAE-To-CAD
 - COTS CAD/CAE (PRO/E, PATRAN, NASTRAN)
 - Electric Boat Proprietary (COMMANDS, FESOL)
 - Multiple Idealized Geometric Shapes And FEM/FEA Models
 - Linear Static And Dynamic FEA
 - PDES, Inc. TAC Demo (November 1998)

AP209 Status

- The Draft International Standard (DIS) version of AP 209 Composite and Metallic Structural Analysis and Related Design was approved unanimously December 20, 1999
 - International consensus is wide and there were no technical issues expected
 - 14 Yes (2 with comments), 3 abstain, 0 No
 - Part 104 Finite Element Analysis similarly has widespread international consensus and was approved on the same date with the same votes
- Extensive piloting has debugged and proven the AP209/Part 104 schema to be correct and capable